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Abstract—A cluster of data servers and a parallel file sys-
tem are often used to provide high-throughput I/O service to
parallel programs running on a compute cluster. To exploit I/O
parallelism parallel file systems stripe file data across the data
servers. While this practice is effective in serving asynchronous
requests, it may break individual program’s spatial locality,
which can seriously degrade I/O performance when the data
servers concurrently serve synchronous requests from multiple
I/O-intensive programs.

In this paper we propose a scheme, IOrchestrator, to improve
I/O performance of multi-node storage systems by orchestrating
I/O services among programs when such inter-data-server coor-
dination is dynamically determined to be cost effective. We have
implemented IOrchestrator in the PVFS2 parallel file system.
Our experiments with representative parallel benchmarks show
that IOrchestrator can significantly improve I/O performance—
by up to a factor of 2.5—delivered by a cluster of data servers
servicing concurrently-running parallel programs. Notably, we
have not observed any scenarios in which the use of IOrchestrator
causes substantial performance degradation.

Index Terms—Spatial Locality, Synchronous Requests, and
PVFS2.

I. INTRODUCTION

Parallel programs are becoming increasingly data intensive.
As an example, in its analysis of astronomical data, the astro
program generates more than 50GB data and 62% of its
total execution time is attributed to disk I/O operation in one
run [16]. To provide adequate I/O support parallel file systems
such as PVFS2 [25], [20], Lustre [18], and GPFS [26] exploit
the natural parallelism provided by a shared cluster of data
servers by striping file data over them. A parallel file system
allows requests from a program running on the compute nodes
to be served by multiple data servers in parallel. However,
when the server cluster is a shared resource—the usual case—
it must concurrently serve requests from multiple programs.
While requests from multiple programs help increase workload
concurrency and keep data servers busy, it can also reduce hard
disk efficiency by compromising programs’ spatial locality.

A. Spatial Locality and Hard Disk Performance

The hard disk is still the most cost-effective mainstream
storage device, but the spatial locality of its accesses dramat-
ically affects its performance. Spatial locality is the property
of a sequence of accesses (or of requests for those accesses,
or of a program that generates those requests) to a particular
storage medium for data that are close to each other. Data on
a hard disk are accessed using moving disk heads and rotating
disk platters, and sequential access can be more than an order
of magnitude faster than random access.

A challenge in exploiting spatial locality is that many
requests with good spatial locality are synchronous. For syn-
chronous requests, a process will not issue its next request
until its last request is served. Programmers generally prefer
to use synchronous requests over asynchronous ones because
it is simpler to manage control flow with synchronous function
calls. However, when multiple programs, each with good
spatial locality, concurrently issue synchronous requests to
the same disk, the result can be severe disk head thrashing
that cripples performance. To preserve the spatial locality
of synchronous requests from one process when multiple
processes are simultaneously issuing requests, schedulers such
as the Anticipatory Scheduler (AS) [11] and Completely
Fair Queuing (CFQ) [2] are used in many high-performance
computing installations. These schedulers are predicated on
the assumption that there will be no more than a small time
interval (think time) between synchronous requests from a
given process, that these requests are likely to have good
spatial locality, and data requested by other processes will be
remote on the disk. For this to be advantageous the think time
must be short enough and the locality of the process must be
strong enough that the benefit of serving next request from
the same process in a non-work-conserving fashion is greater
than the cost paid for idle waiting.

B. Spatial Locality with Multi-node I/O Systems

The AS and CFQ schedulers have proven effective at pre-
serving the spatial locality exhibited by individual processes,
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but their effectiveness is limited to the case where the process’s
requested data reside on a single disk. When file data are
striped over multiple disks or multiple data servers, these
schedulers are often unable to exploit individual processes’
spatial locality. The key reason is that in a multi-disk system
it is not solely the process’s think time that determines how
soon the process’s next request to a given disk will arrive. We
refer to the time period between two requests from a process
that hit a given disk as the reuse distance of the disk by the
process. When file data are striped in a multi-disk system the
reuse distance can become so large that it is not profitable for
the disk to wait for a process’s subsequent request. This is a
direct consequence of striping—sequential contiguous requests
wrap around the disks or data servers. Even if the disks,
or data servers, whose service times contribute to the reuse
distance, are synchronized to provide dedicated service to the
process, the distance can be still too long for the disk head
to wait, instead of leaving for requests from other processes.
Consequently, each disk may end up thrashing its disk head
among processes, breaking spatial locality in the processes.
The potential I/O performance advantage from spatial locality
thus gets lost in the larger-I/O-system behavior.

C. Preserving Spatial Locality for Parallel Programs

Schedulers’ inability to exploit spatial locality poses an
especially serious problem for I/O-intensive parallel programs.
These programs usually rely on strong spatial locality to
ensure high I/O performance. To this end, techniques such
as collective I/O [28] and data sieving [28], have been widely
used to help form large contiguous accesses. In addition, a
common practice for coordinating computation and I/O is to
use synchronization, such as barrier, between I/O requests
in a parallel program. Thus, the synchronization separates
the I/O operations into distinct time regions and makes the
requests issued in the same time slot related to the same
computation, which helps improve spatial locality. However,
the locality created by these techniques is usually only from
the perspective of the program. I/O requests are still sent
simultaneously from a number of processes of the running
program (e.g., collective I/O for MPI programs). It would still
be hard for a data server to exploit the spatial locality of
individual processes because the reuse distance of any data
server by a process could still be too large.

To more effectively discuss spatial locality as observed by
such techniques as collective I/O and barrier, we introduce
the notion of reuse distance at each data server by a parallel
program, which is the time period between two requests from
the same running program that hit a data server. Because
the parallel program consists of multiple processes and the
requests from these processes usually have a relatively strong
spatial locality, the reuse distance by a program may be
much shorter than the reuse distance by an individual process.
Therefore, it can be profitable for the disk head to wait for the
next request from the same program.

In this work we propose a scheme, IOrchestrator, that
orchestrates the serving of requests from multiple programs

over a set of data servers so that the reuse distance of programs
can be minimized alternately to exploit the spatial locality of
each, when sufficient spatial locality exists. Specifically, we
made the following contributions.

• We propose methods to measure reuse distance for pro-
grams and to quantitatively evaluate whether it is cost-
effective to dedicate all involved data servers to a program
to exploit its spatial locality.

• We design algorithms, comprising IOrchestrator, to coor-
dinate request scheduling across data servers according
to monitored programs’ access behaviors so that useful
spatial locality is exposed and efficiently exploited.

• We implement these algorithms in the PVFS2 parallel file
system with minor support from the operating system
and the MPI library. We evaluate it with representative
benchmarks, including mpi-io-test, ior-mpi-io, hpio, and
mpi-tile-io. Experimental measurements show that I/O
throughput can increase by up to 2.5 times, and 39%
on average, compared to the vanilla system for these
benchmarks.

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 describes the design
and implementation of IOrchestrator. Section 4 describes and
analyzes experiment results, and Section 5 concludes.

II. RELATED WORK

We review the research literature, mainly on high-
performance computing, in two areas: (1) how to improve spa-
tial locality for disk-based storage systems from two perspec-
tives, i.e., modification of request streams and rearrangement
of on-disk data layout; and, (2) recovering lost spatial locality
when running multiple processes/programs.

A. Modifying Request Streams for Greater Spatial Locality

To improve I/O performance for data-intensive parallel ap-
plications, researchers have expended much effort on develop-
ing I/O middleware to transform a large number of small non-
contiguous request into a smaller number of larger contiguous
requests. Data sieving [28] is one such technique wherein
instead of accessing each portion of the data separately, a
larger contiguous chunk that spans multiple requests is read.
If the overhead for accessing additional unneeded data, called
holes, is not excessive, its benefit can be significant.

Datatype I/O [5] and list I/O [6] are the two other techniques
that allow users to access multiple non-contiguous data using
a single I/O routine. Datatype I/O is used to access data with
certain regularity, while list I/O is designed to handle more
general cases. Considering the data accesses across processes,
collective I/O [28] was proposed to enable optimization in
a greater scope in comparison to those techniques applied
individually in each process. It rearranges the data accesses
collectively among a group of processes of a parallel program
so that each process has a larger contiguous request. While col-
lective I/O can incur communication overhead because of data
exchange among processes, its performance advantage is well
recognized, making it one of most popular I/O optimization



techniques for MPI programs. Observing that current ROMIO
implementations of collective I/O [28] can cause requests
to arrive at each data server in an order inconsistent with
data placement, resonant I/O was proposed as an enhanced
implementation of collective I/O to restore spatial locality [34].

While these techniques can be effective in enhancing spatial
locality, the locality may not be translated into high I/O
performance when shared I/O systems are concurrently serving
requests from multiple programs. By orchestrating requests’
service on different data servers IOrchestrator can better
exploit the locality, resulting in higher I/O throughput.

B. Rearrangement of On-disk Data Layout for Greater Spatial
Locality

Spatial locality can also be improved by rearranging data
layout on disk to create a layout consistent with expected re-
quest patterns. This can be achieved through data relocation [9]
or data replication. With data replication, some actively used
data would have multiple copies on the disk and the copy
that is closest to the disk head is accessed. Replication can be
carried out within one disk [10], [3], [15] or across disks [33],
[30]. The effectiveness of this method relies on two factors: a
stable and predictable access pattern to know where to relocate
or replicate data; and, a relatively small on-disk working set
so that the replication overhead is not excessive. However,
in a parallel system where requests are concurrently issued
by multiple processes of a program and multiple running
programs, the uncertainty in their relative execution speed can
make stable access patterns hard to detect. For data-intensive
programs that process huge amounts of data this approach
becomes impractical. In contrast, IOrchestrator does not copy
or move user data on the data servers, so it does not have the
concern of potentially high overhead.

C. Recovering Spatial Locality Lost when Running Multiple
Processes/Programs

The weakened or even lost spatial locality with concurrent
servicing of interleaved requests issued by multiple processes
can be recovered by non-work-conserving disk schedulers,
such as the AS scheduler. Here the disk head is kept idle after
serving a request of a process until either the next request from
the same process arrives or the wait threshold expires. An-
ticipatory scheduling is implemented in some popular Linux
disk schedulers [21]. However, a disk on a data server is not
likely to see the next request soon when file data are striped
over multiple data servers. Consequently, the disk scheduler
on the data server would choose to serve requests from other
processes and precipitate disk head thrashing. This problem
may be replicated on all the data servers in the system. In this
sense, IOrchestrator may be viewed as a non-work-conserving
request scheduler for an array of data servers.

D. Our Work in Context

By coordinating the servicing of requests from different
programs it is possible to reduce the time gap between two

requests from the same program to the extent that spatial local-
ity of a program is worth exploiting. IOrchestrator is designed
to exploit such spatial locality for eligible programs, which
will be defined in Section III.C, by coordinating scheduling
at different data servers. A technique known as co-scheduling
was first applied to synchronize CPU scheduling of processes
of a parallel program on multiple nodes of an HPC cluster
so that the overhead of CPU context switching could be
reduced [24], [8]. A similar idea was used for disk spindle
synchronization in a disk array to reduce platter rotation time
in serving small requests [17]. Researchers also found that
the communication latency among cluster-based webservers
can be reduced by co-scheduling accesses to remote caches
rather than mixing the accesses to cache and the disk together
when there is a sufficient time difference between these two
kinds of accesses [13]. Wachs et al. proposed timeslice co-
scheduling for cluster-based storage [31]. The objective of
this latter work is better performance insulation quantified by
R-value [32] while meeting user-specified QoS requirements.
Though their work is similar to ours in the coordination of
some or all disks and dedication of them to one process at
a time, it cannot be effectively used as a solution in the
context of the data servers managed by parallel file systems.
One reason is that their work requires an offline-calculated
scheduling plan according to QoS specifications that does not
adapt to the workload dynamics. Another reason is that it does
not evaluate the benefits of dedicated service to a program
relative to the cost of disk synchronization, and indiscrimi-
nately applies the synchronization to all programs. In contrast,
IOrchestrator dynamically evaluates the cost-effectiveness of
synchronization and opportunistically allows the data servers
to provide dedicated service to one program at a time.

III. DESIGN AND IMPLEMENTATION

The design objective of IOrchestrator is to selectively re-
cover spatial locality, in a parallel program, that is lost when
the program runs together with other programs, all sharing a
multi-node storage system. This is achieved by synchronizing
data servers and dedicating them to one program at a time
under the conditions that (1) adequate spatial locality exists
in the program but gets lost due to co-running programs;
and, (2) the data servers can be sufficiently well utilized to
justify dedicated service. In dedicated service for a selected
program, each data server would only serve requests from that
program, keeping its disk head(s) idle even in the presence of
pending requests from other programs. This approach could
disrupt system performance if it were indiscriminately applied.
To be effective, IOrchestrator tracks the spatial locality and
reuse distances within each program, and that across programs,
and continuously evaluates the cost-effectiveness of dedicated
service. A program is selected for dedicated service only when
it is expected to improve the system’s I/O performance.

A. The IOrchestrator Architecture

We implemented IOrchestrator in the PVFS2 parallel file
system. PVFS2 seeks to provide scalable, high-performance



I/O service for parallel programs using a cluster of data
servers [25]. It has a metadata server for managing all file
metadata for PVFS files, and a number of data servers on
which PVFS files are striped. The PVFS file system is built
on top of local file systems. That is, a PVFS file actually
consists of a number of local files that are managed by local
file systems. The metadata server records how a PVFS file is
laid out on the data servers. A process running on a compute
node first contacts the metadata server before it issues requests
for data directly to the data servers.

One of our design objectives is to enable program-level I/O
scheduling so that eligible programs can receive dedicated
I/O service. To this end, we need to correlate the spatial
locality and reuse distance detected at the data servers to the
programs running at the compute nodes. However, this cannot
be achieved within data servers. As we know, PVFS uses
an iod daemon at each data server to receive I/O requests
from processes on the client side and issue the requests to
the kernel on behalf of the processes. Therefore, the local
file system, which actually schedules requests to the disk,
does not know which process or running program at the
client side issued the requests. To evaluate spatial locality
exhibited within a program and among programs on a data
server, IOrchestrator needs this information. To achieve this
IOrchestrator uses a daemon at the metadata server that is
responsible for collecting information about which files have
been opened by each program. This daemon, the program-files
daemon (pf daemon), maintains the map between program
names and file names. At the compute nodes, when a new MPI
program is launched and its member processes are spawned,
IOrchestrator sends unique identifiers for the running program
(job in MPI) and its processes to the pf daemon.1 We also
instrument the MPI file-opening functions in the ROMIO
library to report to the pf daemon when a file is opened by
a particular process. Using the information from the compute
nodes the pf daemon knows which files are opened by each
program.

Because the metadata server knows how a PVFS file is
striped over the data servers, the pf daemon at the server
knows what local files at each data server are accessed by
a particular running program and passes the information to
a locality daemon at each relevant data server. The locality
daemons are responsible for measuring the spatial locality
among local files. Once the locality daemon knows the re-
lationship between local files and programs, it can derive
the spatial locality exhibited within and among PVFS files
(detailed later) and passes the information to another daemon
of IOrchestrator, the orchestrator, at the metadata server, that
collects the information about spatial locality sent by each
data-server’s locality daemon. The orchestrator daemon iden-
tifies programs for dedicated service and creates the program-
level scheduling plan. This plan is executed by the iScheduler
daemon, which is actually the PVFS2 iod daemon at each

1In MPI, the information on the processes that are spawned in a job is
recorded in file “mpdlistjobs”.
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Fig. 1. The IOrchestrator software architecture: the program-files daemon
collects the program-to-files mapping information from the compute nodes,
and uses it to determine the program-to-local-file mapping information, which
is passed to the locality daemons at the data servers (Step 1); the locality
daemons collect locality and reuse distance statistics and pass them to
the orchestrator daemon (Step 2); and the orchestrator daemon makes the
scheduling plan and sends it to the iScheduler daemons at data servers to
execute (Step 3).

data server with an added component for request scheduling
required by IOrchestrator. The iScheduler daemon sits above
the local disk scheduler, to which it relays requests. Figure 1
illustrates the architecture of IOrchestrator.

B. Measuring Spatial Locality and Programs’ Reuse Distance

While the spatial locality of a sequential program is solely a
property of the program, reflecting its intrinsic access patterns,
the spatial locality observed at each data server for a parallel
program with a multi-node storage system is additionally
determined by how processes run on the compute node and
how file data are striped over data servers. In addition, it
is the spatial locality of all the programs in the system that
collectively determines the I/O efficiency of a data server. We
denote the spatial locality observed at data server i for program
j as SLij and the spatial locality observed at data server i
for all programs as SLi. For a particular program j running
together with other programs, SLij may not be significant in
determining the program’s I/O efficiency unless it is given a
dedicated time slice to access the data server.

There are two conditions for a time slice to be dedicated
to a program j at data server i to be cost effective. The
first condition is that SLij be substantially stronger than SLi

(a smaller value indicates a stronger locality; quantitative
definitions are given below). The second condition is that the
reuse distance of program j at data server i, denoted by RD ij ,
is sufficiently small relative to a given SLi. The first condition



ensures that efficiency can be improved by dedicating a time
slice of the data server to the program. The second condition
ensures that the cost paid for providing dedicated service to
the program is justified. During a dedicated service period for
one program, the concurrency of the workload on the storage
system is reduced, and thus there is a higher probability for
some disks to stay idle while requests from other programs
are pending. To answer the question on whether a disk head
should wait for the next request from the same program within
an expected period RD ij or take a time period SeekTimei,
determined by SLi, to serve other programs, we adopt the
approach described by Huang et al. [10], Section 4.2, to derive
SeekTimei from SLi.

To statistically quantify the locality (SLi and SLij) and
reuse distance (RD ij), we use an approach that is similar to
the one developed in Linux on anticipatory scheduling [19]
for a similar purpose:

SLi(k) =
1
8 ∗ SLi(k − 1) + 7

8 ∗ LBA Gapi(k)

SLij(k) =
1
8 ∗ SLij(k − 1) + 7

8 ∗ LBA Gapij(k)

RD ij(k) =
1
8 ∗ RD ij(k − 1) + 7

8 ∗ ReuseDistanceij(k)

where SLi(k) is SLi when the kth request to data server i is
served, SLij(k) is SLij when the kth request from program
j to data server i is served, and RD ij(k) is RD ij when
the kth request from program j to data server i is served.
LBA Gapi(k) is the LBA gap between the (k − 1)th and
kth requests to data server i, and LBA Gapij(k) is the LBA
gap between the (k − 1)th and kth requests from program j
to data server i. The LBA of a request is the logical block
address of the requested data, reflecting location of the data
on the disk. ReuseDistanceij(k) is the time gap between the
(k − 1)th and kth requests from program j to data server
i. In these formulas we consider both recent and historical
statistics to smooth out short-term dynamics, and phase out
historical statistics by giving recent statistics greater weight.

The locality daemon at each data server, obtaining request
LBAs from the instrumented kernel, collects the various
measurements and calculates these statistics. Among them,
SLi(k), SeekTimei(k), and SLij(k) for any program j are
periodically sent to the orchestrator daemon at the metadata
server. RD ij(k) is only reported for the program that is
receiving dedicated service. At other times RD ij(k) should be
significantly larger as it could include the time periods when
the program’s requests to other data servers are not scheduled.
As mentioned, the locality daemon uses the information on the
relationship between running program and local files, received
from the pf daemon, to determine which requests belong to the
same program, assuming files are not shared among different
programs.

C. Scheduling of Eligible Programs

When the orchestrator daemon at the metadata server re-
ceives the statistics from the locality daemons, it uses the latest

values of SLi, SeekTimei, SLij , and RD ij to check three
conditions to determine whether program j is eligible for a
dedicated service, or whether it is an eligible program: (1) the
standard deviations of SLi and SLij (i = 0, 1, ..., n−1), where
n is the number of data servers, are less than 20% of their
respective mean values; (2) (

∑n
i=0 SLi)/

∑n
i=0 SLij ≥ 1.5;

and (3), (
∑n

i=0 RD ij)/n ≤ SeekTimei. The first two condi-
tions are used to ensure that the benefit to the program from
a dedicated service is potentially substantial and consistent
across the data servers. The threshold values (20% and 1.5) are
set empirically and our measurements show that performance
is not sensitive to them in a relatively large range in our
experiments. (We leave a comprehensive study of their impact
as future work.) The third condition is to ensure that the benefit
of dedicated service is greater than its cost, and is only checked
when dedicated service is granted to the program so that RD ij

can be reported.
If there are m running programs in the system that are

identified as eligible programs, there are m + 1 scheduling
objects for the orchestrator daemon. Each eligible program is
a scheduling object and the remaining programs (the ineligible
ones) constitute object m + 1. While each eligible program
would receive a time-slice of dedicated service and obtain its
reuse distance from the locality daemon at each data server,
we enhance the daemon to collect the reuse distance for
scheduling object m+1 and pass it to the orchestrator daemon.
Because the daemon knows the reuse distance of each of its
scheduling objects, averaged over all data servers, it decides
the scheduling time slice size for each object. With a fixed
scheduling window, set to 500ms by default in our prototype,
each object receives a portion of it as the time slice for its
dedicated service, whose size is inversely proportional to the
percentage of its average reuse distance over the sum of aver-
age reuse distances of all objects. The scheduling plan is then
to schedule the programs in a window-by-window manner.
In a window, each object receives its dedicated service slice.
To schedule an object the orchestrator daemon broadcasts the
object identifier to all iScheduler daemons. Each iScheduler
daemon then releases the requests from program(s) matching
the object identifier to the kernel until another object identifier
is received. These requests are scheduled by the local disk
scheduler for further optimization. As such, all of the ineligible
programs have their requests scheduled together in the same
time slice.

In the design of the scheduling, we take both efficiency and
fairness into account. Smaller reuse distance indicates a higher
request arrival rate, or higher I/O demand from one or multiple
programs. Giving a larger service time slice to a program, or
programs, of higher I/O demand is fair for all programs. At
the same time, dedicated service to eligible programs allows
their performance potential to be fully realized, rather than
getting lost in the multiplexed use of data servers. A program
with weak spatial locality, or large SLij values for program j,
should get a small time slice in the interests of disk efficiency.
However, we do not have to explicitly use this statistic in the
allocation of time slices to induce this effect. This is because



large SLij values would usually imply a large reuse distance,
which automatically leads to a small scheduling time slice.

IV. PERFORMANCE EVALUATION AND ANALYSIS

To evaluate the performance of IOrchestrator, we set up a
cluster consisting of six compute nodes, six data servers, and
one dedicated metadata server for the PVFS2 file system. All
nodes were of identical configuration, each with dual 1.6GHz
Pentium processors, 1GB memory, and a SATA disk (Seagate
Barracuda 7200.10, 150GB) with NCQ enabled. Each node ran
Linux 2.6.21 with CFQ (the default Linux disk scheduler), and
used GNU libc 2.6. The PVFS2 parallel file system version
2.8.1 was installed. We used MPICH2-1.1.1, compiled with
ROMIO, to generate executables for MPI programs. All nodes
were interconnected with a switched Gigabit Ethernet network.
A striping unit size of 64KB was used to stripe files over the
six data servers in the PVFS2 file system. To ensure that all
data were accessed from disk the system buffer caches of each
compute node and data server were flushed prior to each test
run.

A. The Benchmarks

We selected five MPI-IO applications of different and repre-
sentative I/O access patterns to benchmark the PVFS2 parallel
file system enhanced with IOrchestrator: mpi-io-test, ior-mpi-
io, noncontig, hpio, and mpi-tile-io, which are briefly described
following.

mpi-io-test is an MPI-IO benchmark from the PVFS2 soft-
ware package [25]. In our experiments, we ran the benchmark
with five MPI processes spawned, each on one compute node,
to read or write one 10GB file. Each process accessed one
segment of contiguous data at a time. If collective I/O is used,
in each collective call five processes access five segments in a
row, respectively. In the next call, the next five segments are
accessed. The size of a request from each process was 64KB.

ior-mpi-io is a program in the ASCI Purple Benchmark
Suite developed at Lawrence Livermore National Labora-
tory [12]. In this benchmark each of the five MPI processes is
responsible for reading or writing its own 1/5 of a file whose
size is 10GB. Each process continuously issues sequential
requests, each for a 64KB segment. If collective I/O is used,
the processes’ requests for the data are at the same relative
offset in each process’s access scope and are organized into
one collective-I/O function call.

noncontig is a program from the Parallel I/O Benchmarking
Consortium [23] developed at Argonne National Laboratory.
This benchmark uses five MPI processes to read a 10GB file
with a vector-derived MPI data type. If we consider the file
to be a two-dimensional array, there are five columns in the
array. Each process reads a column of the array, starting at row
0 of its designated column. In each row of a column there are
elmtcount elements of the MPI INT type, so the width of a
column is elmtcount× sizeof (MPI INT). If collective I/O is
used, in each call the total amount of data read by the processes
is fixed, determined by the buffer size, which is 8MB in our
experiment.

hpio is a program designed by Northwestern University
and Sandia National Laboratories to systematically evaluate
I/O performance using a diverse set access patterns [7]. This
benchmark program can generate differing data access patterns
by changing three parameters: region count, region spacing,
and region size. In our experiment we set region count to
4096, region spacing to 10, and region size to 64KB. Using
five MPI processes, the access pattern is similar to the one
described for benchmark noncontig. The length of a column
is 4096 and the width of a column is 64KB. When collective
I/O is used, each process accesses its designated column.

mpi-tile-io is also from the Parallel I/O Benchmarking
Consortium [22]. It uses MPI processes to read or write a file
in a tile-by-tile manner, with two adjacent tiles partially over-
lapped. Each process accesses 8KB, with 64B of overlapping
between two consecutive accesses.

In all of these benchmarks file access can be set to either
read or write. Additionally, both hpio and noncontig have
the option of configuring their data access patterns as either
contiguous or non-contiguous for memory access and file
access. In summary, these selected benchmarks cover a large
spectrum of access behaviors: from sequential access among
processes (e.g., mpi-io-test) to non-sequential access among
processes (e.g., ior-mpi-io), from read access to write access,
from requests that are well-aligned with the 64KB striping unit
size (e.g., mpi-io-test and ior-mpi-io) to requests of different
sizes (e.g., noncontig and mpi-tile-io).

B. Performance of Homogenous Workloads
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In this experiment we run two instances of each benchmark
on the PVFS2 parallel file system and measure the aggregate



 2.14e+08

 2.16e+08

 2.18e+08

 2.2e+08

 2.22e+08

 2.24e+08

 21  21.2  21.4  21.6  21.8  22

L
B

A
 (

L
o
g
ic

 B
lo

ck
 A

d
d
re

ss
)

Execution Time (Seconds) 

 (a)

Data Server 2

W/ IOrchestrator
W/O IOrchestrator

 2.5e+08

 2.52e+08

 2.54e+08

 2.56e+08

 2.58e+08

 2.6e+08

 21  21.2  21.4  21.6  21.8  22

L
B

A
 (

L
o
g
ic

 B
lo

ck
 A

d
d
re

ss
)

Execution Time (Seconds) 

 (b)

Data Server 5

W/ IOrchestrator
W/O IOrchestrator
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period, when two mpi-io-test programs ran together with and without using IOrchestrator. Note that because the programs run much faster with IOrchestrator,
they access disk positions somewhat different from those accessed by the programs without IOrchestrator during the same execution period.
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Fig. 4. Reuse distances of requests served at data server 5 measured for one program instance when two instances of the mpi-io-test benchmark ran together
without and with using IOrchestrator.

I/O throughput with and without using IOrchestrator, respec-
tively. Each running program accesses its own data file, which
is striped over the six data servers.

Performance using only barrier. Figure 2 presents the
I/O throughput for the five benchmarks when only barrier is
used between I/O operations and collective I/O optimization
is not used. In the experiments their file access is configured
either as read or as write and the access patterns of hpio
and noncontig are configured either as contiguous or as non-
contiguous. IOrchestrator improves the I/O throughput of the
entire file system by up to 89% and 43% on average.

For the mpi-io-test benchmark, when IOrchestrator is used
the I/O throughput is increased by 57% for read and 37% for
write. The data access pattern of the program, or that of its

process if only one process is created, is sequential. However,
when two running programs, each with five processes, are
sending their requests to the data servers, the disk head at each
data server cannot turn this strong spatial locality (sequential
access) into high disk efficiency. Figures 3(a) and 3(b) show
the order of accessed disk addresses, or roughly the path of
disk head movement at data servers 2 and 5, respectively, in a
one-second execution sample. When IOrchestrator is not used,
the disk head rapidly alternates between two disk regions,
each storing a data file for one running program. The disk I/O
scheduler, CFQ, does not preserve spatial locality within each
program, though it conducts anticipatory scheduling similar
to the AS disk scheduler. To discover why, we collected the
reuse distances of one running program at data server 5 during



certain time period and show them in Figure 4(a) (without
IOrchestrator) and Figure 4(b) (with IOrchestrator). Without
IOrchestrator, there are many very large reuse distances (be-
tween 20ms and 50ms).2 With such large reuse distances, it is
impossible for the disk heads to be idly waiting for the next
request from the same program without making the disks less
productive. Thus, we see frequent disk head seeks between
two distant disk regions in Figure 3. When detecting the strong
locality within each running program, IOrchestrator provides
dedicated service time slices to each. In its dedicated service
period, all disks are coordinated to service one program and
its reuse distance can be significantly reduced (Figure 4(b)).
This helps exploit the strong locality inherent in the program
into efficient disk access (see the lines showing access with
IOrchestrator in Figure 3). We can make similar observations
for other benchmarks with sequential access patterns, such as
hpio(c-c) and noncontig(c-c).
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when barrier and collective I/O are used. For each program, the data access
is set as either read or write. For hpio and noncontig the data access pattern
is configured as either contiguous (c) or non-contiguous (nc)

For mpi-tile-io I/O throughput increased by 11% for read
and 15% for write. The benchmark has a typical random data
access pattern. The difference between spatial locality within
each running program and that among running programs is
relatively small, though it is larger than the threshold required
for IOrchestrator to enable dedicated I/O service for them. For
this reason, the performance improvement with IOrchestrator
is small compared to the programs with strong intra-program
locality. This explanation for smaller improvements also ap-
plies to benchmarks noncontig(nc-nc) and hpio(nc-nc). The
ior-mpi-io benchmark has very weak spatial locality. Requests
from its processes access five different disk regions that are
distant from each other (around 2GB). The cost of moving

2Those very small reuse distances shown in Figure 4 are mostly produced
by requests from different processes of the running program, and can be
exploited by the CFQ scheduler.

disk heads within one program is comparable to the cost of
moving them between different running programs. Therefore,
IOrchestrator disqualifies both running programs for dedicated
services and essentially does not change the scheduling of the
current PVFS2 file system. As we expected, the experimental
results show little difference when using IOrchestrator. These
results also indicate that the overhead introduced by IOrches-
trator is trivial compared to I/O operations.

Performance with using both barrier and collective I/O.
Figure 5 presents the I/O throughput for the five benchmarks
when both barrier and collective I/O are applied. IOrchestrator
improves the I/O throughput by up to 63%, and 28% on
average.

For benchmarks with non-sequential access patterns such
as mpi-tile-io, hpio(nc-nc), and noncontig(nc-nc), the use of
collective I/O effectively improves the I/O performance be-
cause it transforms small random accesses to large sequen-
tial accesses within each program. However, the interference
between running programs offsets the potential benefits of
collective I/O. When requests involved in a collective I/O call
do not have dedicated service by the data servers, the local
disk I/O scheduler thrashes the disk head between programs
to avoid long idle waiting periods. When IOrchestrator enables
the dedicated service for eligible programs, the improved
spatial locality can be exploited. For benchmarks that already
have sequential access patterns, such as mpi-io-test, collective
I/O may introduce overhead without improving locality and
thus reduce I/O throughput. In such cases, the advantage of
IOrchestrator is also apparent.

We also observe that the throughput of benchmark ior-
mpi-io is significantly reduced when collective I/O is used.
After analyzing the data accesses of the benchmark, we find
that in one collective call only one or two data servers are
busy serving requests while the others are idle because of a
mismatch between the data request pattern and the striping
pattern, severely under-utilizing the system. IOrchestrator does
not apply dedicated I/O service to the program because of
weak spatial locality within the program, and because the
difference between intra-program and inter-program localities
is not consistent across the data servers.

Performance without barrier or collective I/O. Figure 6
presents the I/O throughput of the five benchmarks in which
the barrier routines between parallel I/O routines are removed
and collective I/O is not used. Without barrier and collective
I/O, the throughput of the benchmarks is reduced except for
hpio(c-c) and noncontig(c-c). For example, the throughput of
mpi-io-test is reduced from 102 MB/s to 86 MB/s for read,
and from 115 MB/s to 108 MB/s for write, and the throughput
of hpio(nc-nc) is reduced from 70 MB/s to 31 MB/s for read,
and from 54 MB/s to 28 MB/s for write (Figures 2 and 6).
Without barrier and collective I/O, each process proceeds at
its own pace, making the on-disk distances of data accessed
by different processes of the program increasingly larger. For
hpio(c-c) and noncontig(c-c), the size of requests is very large
(more than 10MB), which by itself can make the disk efficient.
The overhead paid by barrier and collective I/O does not pay
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the data access is set as either read or write. For hpio and noncontig, data
access pattern is configured as either contiguous (c) or non-contiguous (nc)

off, and the throughputs are even higher when these techniques
are not used.

When the spatial locality within a program is weakened by
not using barrier and collective I/O, the relative performance
advantage of IOrchestrator is usually reduced, as shown in
Figure 6. The exception is mpi-io-test, in which 72% and
36% throughput increases for read and write, respectively,
are achieved without barrier and collective I/O, compared
with 57% and 37% with only barrier, and 63% and 15%
using both barrier and collective I/O, respectively. This is
because dedicated I/O service enforced by IOrchestrator allows
processes of a program of sequential access pattern to receive
equal service in a time slice and forces them to progress at
almost the same speed.

C. Performance of Heterogenous Workloads

Next we study the effectiveness of IOrchestrator when dif-
ferent programs are running concurrently. We select three pro-
grams of different access patterns, mpi-io-test, noncontig(nc-
nc), and hpio(nc-nc), and run one instance of each concurrently
to read three 10GB files, respectively. In addition to running
the programs with the vanilla PVFS2 and with IOrchestrator,
we test a version of IOrchestrator restricted to even time-
slicing, wherein the time slice is evenly allocated to each
scheduling object instead of proportionally allocated according
to reuse distance. Figure 7 shows both the throughput for
each running program and the throughput of the entire system.
With just vanilla PVFS2 the throughout of hpio(nc-nc) (with
weak locality) has greater throughput than mpi-io-test (with
strong locality). When more disk time is allocated to serve
random, rather than sequential, requests, the disk’s efficiency
is reduced. Thus the entire system’s throughput is the lowest
among the three tested scenarios. By dedicating one third
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Fig. 7. I/O throughputs of three different programs, mpi-io-test, noncontig(nc-
nc), and hpio(nc-nc), when they are running together to read three data
files of 10GB, respectively. The entire system’s throughputs are also shown.
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of system service time to each program, the program with
stronger locality will produce higher throughput without inter-
ference from programs of weaker locality. Even time-slicing
improves the system throughput by 17%. With IOrchestrator,
mpi-io-test is identified as being eligible for dedicated service
while the other two programs are not. According to their
reuse distances, mpi-io-test is allocated about half of the disk
service time, while noncontig(nc-nc) and hpio(nc-nc) together
receive the other half. Both mpi-io-test and hpio(nc-nc) enjoy
increased throughput while noncontig(nc-nc) is little affected.
IOrchestrator further improves aggregate system throughput
by 30%. Though further improving throughput of mpi-io-test
as well as system throughput is possible by allocating more
disk service time to mpi-io-test, it would unduly compromise
fairness among the co-running programs. IOrchestrator, by its
design, has addressed this issue.

D. Effect of File Distances among Programs on IOrchestrator

The distance between files accessed by different programs
has a direct effect on the spatial locality among programs. The
larger the distance, the weaker the locality, and consequently
the greater potential for IOrchestrator to improve performance.
To confirm this speculation, we run two instances of mpi-
io-test reading two files of 1GB, respectively, at different
distances apart. The on-disk distance is the size of the space
(difference in LBA times block size) separating the files. In
our experiment we use distances of 0GB, 10GB, 20GB, and
30GB.3 Figure 8 shows the system’s I/O throughputs. The
results are consistent with our hypothesis: when the distance

3In the previous experiments 0GB between files was used. Thus the
performance measurements reported in those experiments represent lower
bounds (on our testbed) on possible performance improvements made by
IOrchestrator.



is increased from 0GB to 30GB, I/O throughput is reduced by
48% without using IOrchestrator. This reduction is especially
significant when the distance is still relatively small, such
as from 0GB to 10GB, and from 10GB to 20GB. When
IOrchestrator is used both running programs are identified as
eligible for dedicated service. With a 30GB distance IOrches-
trator improves the system throughout by 2.5 times. As the
file distance increases, we only observe minor reductions of
throughput (5% from 0MB to 30GB). When dedicated service
time slices are alternated between these two running programs,
the frequency of disk head seeks between programs becomes
much lower, and the cost for the seeks becomes less significant
to the I/O efficiency.
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Fig. 8. Aggregate I/O throughputs measured when we increase on-disk file
distances from 0GB to 30GB.

E. Impact of Scheduling Window Size

Each scheduling object receives a portion of each scheduling
window as its time slice for dedicated service. In the experi-
ments we have so far described the 500ms default scheduling
window size was used. Next we study the impact of scheduling
window size on the effectiveness of IOrchestrator. To this end
we run two instances of the mpi-io-test program concurrently,
each reading one 10GB files, with window varying among
125ms, 250ms, 500ms, and 1000ms. Figure 9 shows the sys-
tem I/O throughputs with different window sizes. Compared to
the vanilla system, the I/O throughput is increased by 40.2%,
48.5%, 58.6%, and 59.6% with the selected window sizes,
respectively. Apparently a larger window allows a scheduling
object to stay with its dedicated I/O service for a longer time
period and reduces the frequency of disk head switches among
scheduling objects, consequently improving I/O performance.
This is consistent with our observation on the experiment
results. The improvement is substantial when the window size
is relatively small. However, when the window is sufficiently
large, such as 500ms, further increasing the window size, such
as 1000ms, receives diminishing return on I/O performance. In
the meantime, a too-large window can allow one scheduling
object to exclusively hold disk service for a very long time

period at a time and make programs less responsive. For this
reason we select a modest time period as the default window
size for IOrchestrator.
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Fig. 9. Aggregate I/O throughputs measured when we increase the scheduling
window size from 125ms to 1000ms. The I/O throughput without using
IOrchestrator is also shown for comparison.

V. CONCLUSIONS

In the paper we have described the design and imple-
mentation of IOrchestrator, a technique for identifying and
exploiting spatial locality that is inherent in individual parallel
programs but gets lost with the use of a shared multi-node I/O
system. With careful, dynamic analysis of cost-effectiveness,
IOrchestrator gives programs with strong locality dedicated
I/O service time by coordinating data servers. IOrchestra-
tor is implemented in the PVFS2 parallel file system with
modest instrumentation in the Linux kernel and the ROMIO
MPI library. Our experimental evaluation of the scheme with
representative I/O-intensive parallel benchmarks, such as mpi-
io-test and mpi-tile-io, shows that it can improve system
I/O performance by up to 2.5 times, and 39% on average,
without compromising fairness of I/O service. Furthermore,
the implementation of IOrchestrator does not rely on specific
functionalities or features of PVFS2 and MPICH2. We expect
the principle and design of IOrchestrator can be effectively
applied to high-performance computing platforms with other
parallel file systems or parallel libraries.
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